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Abstract Silicon Photomultipliers Determination of VBreakdown 

Conclusion 

The Japanese Experiment Module – Extreme Universe Space 
Observatory (JEM-EUSO) mission is designed to explore the most 
energetic particles known to occur in nature, ultra-high-energy 
cosmic rays (UHECRS). By looking down at the night sky from the 
International Space Station, JEM-EUSO will be able to detect the 
UV photons produced by UHECRS air showers in our atmosphere. 
Current plans for the design of JEM-EUSO call for a focal surface 
utilizing photomultiplier tubes (PMTs). While PMTs have been used 
in similar projects before, a new technology may be replacing them 
as the better alternative. Silicon photomultipliers (SiPMs) are 
quickly becoming this new option. SiPMs demonstrate many of the 
same qualities of with superior performance in detection efficiency, 
angular resolution, and reliability. Since the SiPMs intrinsic 
background is affected by ambient temperature, the focus of this 
research is to test the performance of these detectors at cryogenic 
temperatures. 
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Figure 1. Cosmic ray air showers produce two types of light as they 
enter the atmosphere. The first source of light is from the excitation 
of nitrogen from the secondary particles in the air showers. This light 
is called fluorescence light. The second source is from Cherenkov 
light, which is produced because the secondary particles are 
traveling faster than the speed of light within our atmosphere. 

Figure 2. Dark pulses are a major factor in SiPM noise; they are 
caused by several factors, including ambient heat. Using the 
EASIROC application-specific integrated circuit (ASIC), an 
electrical signal caused by a dark pulse firing of the SiPM can be 
read out. The initial signal from the SiPM is amplified, shaped, and 
coupled to a discriminator to determine whether its value exceeds 
the noise threshold setting. The threshold is set using the DAC 
(digital-to-analog converter) trigger on the EASIROC. Higher DAC 
values allow more noise to be read out. The threshold at which the 
dark count rate abruptly decreases correspond to the level of one 
photoelectron, two photoelectrons, and so on from left to right. The 
data shown was taken at -30 °C. 

SiPMs contain multiple  
micro-pixels of avalanche  
photodiodes (APDs) that 
are uniquely operated at a 
r eve rse b i as vo l t age 
(operating voltage)  
above the APDs  
breakdown voltage.  
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*PMT data is from a Hamamatsu Multi-Anode Photomultiplier Tube (MAPMT) 
*SiPM data is from a Hamamatsu Multi-Pixel Photon Counter (MPPC) Figure 3. Using a LabView software developed for the 

EASIROC, trigger efficiencies can be read out over a sweep of 
threshold DAC trigger values for several different operating 
voltages. The left abrupt change is equivalent to 1 photo-
electron and the right abrupt change is equivalent to 0 photo-
electrons.     

Figure 4. Threshold 0 pe – Threshold 1 pe = Single Avalanche 
Breakdown. Interpolating the data from the threshold DAC 
trigger sweeps at different reverse bias voltages can be used to 
find the Vbreakdown. It is evident from the data that reducing the 
temperature of the SiPMs will reduce the Vbreakdown. 

This overvoltage  
(Vbias – Vbreakdown) creates an electric field in the APD that becomes 
high enough to cause an avalanche breakdown from very weak 
light entering the APD. The avalanche breakdown is the result of 
impact ionization from a single photon striking a silicon atom inside 
the diode. This method is effective at counting photons, but it is 
also susceptible to ambient heat firing the micro-pixels and causing 
noise. 
 
A parameter that SiPMs must meet before replacing PMTs is 
maintaining a low-power budget per channel (<0.5 mW) and having 
a low dark count rate (<100 kHz). 
 
 

The Vbreakdown of an SiPM is an important characteristic to 
understand if we are to lower the power of these detectors to 
meet the power budget per channel for JEM-EUSO. To achieve 
the goal of having the power per channel less than 0.5 mW, we 
decided to test if cooling the detectors down would lower the 
Vbreakdown, and thus lower the operating voltage. 

Further testing of the SiPMs must be done at cryogenic 
temperatures to see if the Vbreakdown continues to drop as the 
temperature is decreased. To achieve this task, we are putting a 
SiPM into a custom-built IRLabs dewar. This dewar can be 
depressurized and cooled down using liquid nitrogen. Using a 
temperature controller, temperatures can be maintained from 100K 
to +270K. With this scheme, we will be able to prove that SiPMs 
should replace PMTs on the JEM-EUSO project. 

The dewar is almost ready to analyze a SiPM. Once set up, testing 
of the dark pulse rate and breakdown voltage can occur. The 
eventual goal will be to examine an array of 64 SiPMs within the 
dewar. If the SiPMs meet the standards that have been set by JEM-
EUSO, they may eventually replace the PMTs that are already 
planned for the project. As SiPMs meet or exceed PMTs in many 
characteristics, this will only improve JEM-EUSO. 


